Exercise 1

Among the following graphs, find which ones are minors of which other ones.

For each pair where none is the minor of the other one, what is a largest (in terms of the number of edges) common minor of the two graphs?

Exercise 2

Find two graphs G and H such that H is a minor of G and $\chi(G)<\chi(H)$.
Find two graphs G and H such that H is a minor of G and $\chi(G)>\chi(H)$.

Exercise 3

Find a structural characterization of the class of C_{4}-minor-free graphs.

Exercise 4

Let D denote the diamond - the graph obtained from K_{4} by deleting one edge. Find a structural characterization of the class of D-minor-free graphs. Are they all planar? Are they all outerplanar?

Exercise 5

Let H and H^{\prime} be two graphs. Let \mathcal{C} and \mathcal{C}^{\prime} denote the classes of H-minor-free and H^{\prime}-minor-free graphs, respectively.
If H is a subgraph of H^{\prime}, is there a relation of inclusion between the classes \mathcal{C} and \mathcal{C}^{\prime} in one sense or the other?
If H is a minor of H^{\prime}, is there a relation of inclusion between the classes \mathcal{C} and \mathcal{C}^{\prime} in one sense or the other?

Exercise 6

Does the class of triangle free graphs (that is where triangles are forbidden as an induced subgraph) admit a finite number of minimal forbidden minors?

What about the class of P_{3}-free graphs (that is where the path on three vertices is forbidden as an induced subgraph)?

